Comparison of Environmental Implications of Asphalt and Steel-Reinforced Concrete Pavements

نویسندگان

  • ARPAD HORVATH
  • CHRIS HENDRICKSON
چکیده

The public, industry, and governments have become increasingly interested in green design and sustainable development. Construction activities affect the environment significantly, so environmental issues should be considered seriously. Thousands of miles of roads are paved every year with asphalt and steel-reinforced concrete. What are the environmental effects of the two materials? If asphalt has been used overwhelmingly over concrete, is it a better choice for sustainable development? We present results of a life cycle inventory analysis of the two materials based on publicly available data. We find that for the initial construction of equivalent pavement designs, asphalt appears to have higher energy input, lower ore and fertilizer input requirements, and lower toxic emissions, but it has higher associated hazardous waste generation and management than steel-reinforced concrete. When accounting for the uncertainty in the data and when annualizing environmental effects based on assumed average service lives of the two pavement types, the resource input requirements and the environmental outputs are roughly comparable for the two materials. However, asphalt pavements have been recycled in larger quantities than concrete pavements, with consequent resource savings and avoided pollution, which suggests that asphalt may be a better choice from a sustainable development viewpoint. Of course, special functional requirements or economics may dictate the use of one material over the other in particular applications regardless of the overall environmental effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Properties of Asphalt Concrete Containing Glass Fibers and Nanoclay

The performance of asphaltic pavements during their service life is highly dependent on the mechanical properties of the asphaltic layers. Therefore, in order to extend their service life, scientists and engineers are constantly trying to improve the mechanical properties of the asphaltic mixtures. One common method of improving the performance of asphaltic mixtures is using different types of ...

متن کامل

Influences of Surface Characteristics and Modified Asphalt Binders on Interface Shear Strength

Weak bonding between layers of pavement leads to damages on the composite pavement. Bonding plays an important role in the durability and maintenance of composite pavement layers. The present study evaluates the factors effective in bond strength of the interface between concrete and asphalt pavements. The factors considered for this purpose include steel slag percentage in the concrete pavemen...

متن کامل

Study on Performance of Epoxy Asphalt Concrete Applied in the Deck Pavement of Pingsheng Steel Bridge

As a fair deck pavement material of its kind used in steel bridge, the epoxy asphalt concrete is considered much more superior to ordinary asphalt concrete in terms of road performance, while still greatly subject to the level of design and construction. Starting from a practical case of the epoxy asphalt concrete that has been applied in the deck pavement of Pingsheng Steel Bridge, this paper ...

متن کامل

Epoxy Asphalt Concrete (EAC) Used to Repave the Fremont Bridge in Portland Oregon

The Fremont Bridge is steel tied arch bridge over the Willamette River in Portland, Oregon. It carries traffic on Interstate 405 and US Highway 30 between downtown and north Portland. . The bridge was constructed in 1973, and the paving on the original steel deck consisted of epoxy asphalt concrete followed by an asphalt concrete overlay. The pavement performed for nearly 40 years before it nee...

متن کامل

Life cycle assessment of representative swiss road pavements for national roads with an accompanying life cycle cost analysis.

The subject of this paper is an environmental life cycle assessment (LCA) and life cycle cost analysis (LCCA) of processes needed to construct and maintain representative Swiss asphalt, concrete, and composite pavements (including subbase layers) applicable for the Swiss national road network over a period of 75 years. The environmental indicators analyzed are the global warming potential indic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998